Artificial intelligence in cardiac imaging: a path full of challenges, obstacles and pitfalls
DOI:
https://doi.org/10.37615/retic.v6n3a1Downloads
Metrics
References
Tsang W, Salgo IS, Medvedofsky D, et al. Transthoracic 3D Echocardiographic Left Heart Chamber Quantification Using an Automated Adaptive Analytics Algorithm. JACC Cardiovasc Imaging. 2016 Jul;9(7):769-782. doi: https://doi.org/10.1016/j.jcmg.2015.12.020 DOI: https://doi.org/10.1016/j.jcmg.2015.12.020
García-García E, González-Romero GM, Martín-Pérez EM, et al. Real-World Data and Machine Learning to Predict Cardiac Amyloidosis. Int J Environ Res Public Health. 2021 Jan 21;18(3):908. doi: https://doi.org/10.3390/ijerph18030908 DOI: https://doi.org/10.3390/ijerph18030908
Kusunose K, Abe T, Haga A, et al. A Deep Learning Approach for Assessment of Regional Wall Motion Abnormality from Echocardiographic Images. JACC Cardiovasc Imaging. 2020 Feb;13(2 Pt 1):374-381. doi: https://doi.org/10.1016/j.jcmg.2019.02.024 DOI: https://doi.org/10.1016/j.jcmg.2019.02.024
Wifstad SV, Lovstakken L, Avdal J, et al. Quantifying Valve Regurgitation Using 3-D Doppler Ultrasound Images and Deep Learning. IEEE Trans Ultrason Ferroelectr Freq Control. 2022 Dec;69(12):3317-3326. doi: https://doi.org/10.1109/TUFFC.2022.3218281 DOI: https://doi.org/10.1109/TUFFC.2022.3218281
Leha A, Hellenkamp K, Unsöld B, et al. A machine learning approach for the prediction of pulmonary hypertension. PLoS ONE. 2019;14(10):e0224453. https://doi.org/10.1371/journal.pone.0224453 DOI: https://doi.org/10.1371/journal.pone.0224453
Sengupta PP, Shrestha S, Kagiyama N, et al. A Machine-Learning Framework to Identify Distinct Phenotypes of Aortic Stenosis Severity. JACC. Cardiovascular Imaging. 2021 Sep;14(9):1707-1720. doi: https://doi.org/10.1016/j.jcmg.2021.03.020 DOI: https://doi.org/10.1016/j.jcmg.2021.03.020
Skandarani Y, Lalande A, Afilalo J, et al. Generative Adversarial Networks in Cardiology. Can J Cardiol. 2022 Feb;38(2):196-203. doi: https://doi.org/10.1016/j.cjca.2021.11.003 DOI: https://doi.org/10.1016/j.cjca.2021.11.003
Koulaouzidis G, Jadczyk T, Iakovidis DK, et al. Artificial Intelligence in Cardiology-A Narrative Review of Current Status. J Clin Med. 2022 Jul;11(13):3910. doi:https://doi.org/10.3390/jcm11133910 DOI: https://doi.org/10.3390/jcm11133910
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Miguel Ángel García Fernández
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
RETIC is distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license https://creativecommons.org/licenses/by-nc-nd/4.0 which allows sharing, copying and redistribution of the material in any medium or format, under the following terms:
- Attribution: you must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests that the licensor endorses you or your use.
- Non-commercial: you may not use the material for commercial purposes.
- No Derivatives: if you remix, transform or build upon the material, you may not distribute the modified material.
- No Additional Restrictions: you may not apply legal terms or technological measures that legally restrict others from doing anything permitted by the license.