Artificial intelligence in cardiac imaging: a path full of challenges, obstacles and pitfalls

Authors

DOI:

https://doi.org/10.37615/retic.v6n3a1

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Tsang W, Salgo IS, Medvedofsky D, et al. Transthoracic 3D Echocardiographic Left Heart Chamber Quantification Using an Automated Adaptive Analytics Algorithm. JACC Cardiovasc Imaging. 2016 Jul;9(7):769-782. doi: https://doi.org/10.1016/j.jcmg.2015.12.020 DOI: https://doi.org/10.1016/j.jcmg.2015.12.020

García-García E, González-Romero GM, Martín-Pérez EM, et al. Real-World Data and Machine Learning to Predict Cardiac Amyloidosis. Int J Environ Res Public Health. 2021 Jan 21;18(3):908. doi: https://doi.org/10.3390/ijerph18030908 DOI: https://doi.org/10.3390/ijerph18030908

Kusunose K, Abe T, Haga A, et al. A Deep Learning Approach for Assessment of Regional Wall Motion Abnormality from Echocardiographic Images. JACC Cardiovasc Imaging. 2020 Feb;13(2 Pt 1):374-381. doi: https://doi.org/10.1016/j.jcmg.2019.02.024 DOI: https://doi.org/10.1016/j.jcmg.2019.02.024

Wifstad SV, Lovstakken L, Avdal J, et al. Quantifying Valve Regurgitation Using 3-D Doppler Ultrasound Images and Deep Learning. IEEE Trans Ultrason Ferroelectr Freq Control. 2022 Dec;69(12):3317-3326. doi: https://doi.org/10.1109/TUFFC.2022.3218281 DOI: https://doi.org/10.1109/TUFFC.2022.3218281

Leha A, Hellenkamp K, Unsöld B, et al. A machine learning approach for the prediction of pulmonary hypertension. PLoS ONE. 2019;14(10):e0224453. https://doi.org/10.1371/journal.pone.0224453 DOI: https://doi.org/10.1371/journal.pone.0224453

Sengupta PP, Shrestha S, Kagiyama N, et al. A Machine-Learning Framework to Identify Distinct Phenotypes of Aortic Stenosis Severity. JACC. Cardiovascular Imaging. 2021 Sep;14(9):1707-1720. doi: https://doi.org/10.1016/j.jcmg.2021.03.020 DOI: https://doi.org/10.1016/j.jcmg.2021.03.020

Skandarani Y, Lalande A, Afilalo J, et al. Generative Adversarial Networks in Cardiology. Can J Cardiol. 2022 Feb;38(2):196-203. doi: https://doi.org/10.1016/j.cjca.2021.11.003 DOI: https://doi.org/10.1016/j.cjca.2021.11.003

Koulaouzidis G, Jadczyk T, Iakovidis DK, et al. Artificial Intelligence in Cardiology-A Narrative Review of Current Status. J Clin Med. 2022 Jul;11(13):3910. doi:https://doi.org/10.3390/jcm11133910 DOI: https://doi.org/10.3390/jcm11133910

Published

2023-12-30

How to Cite

1.
García Fernández M Ángel. Artificial intelligence in cardiac imaging: a path full of challenges, obstacles and pitfalls. Rev Ecocardiogr Pract Otras Tec Imag Card (RETIC) [Internet]. 2023 Dec. 30 [cited 2024 Nov. 22];6(3):I-IV. Available from: https://imagenretic.org/RevEcocarPract/article/view/636