Artificial intelligence in echocardiography
DOI:
https://doi.org/10.37615/retic.v2n1a1Keywords:
artificial intelligence, deep learning, machine learning.Abstract
Summary of the principles and applications of artificial intelligence techniques in cardiology.
Downloads
Metrics
References
Kaplan A, Haenlein M, Siri, Siri, in my hand: Who’s the fairest in the land? On the interpretations, illustrations, and implications of artificial intelligence, Business Horizons 2019; 62 (1): 15-25. doi: https://doi.org/10.1016/j.bushor.2018.08.004
Khamis H, Zurakhov G, Azar V, et al. Automatic apical view classification of echocardiograms using a discriminative learning dictionary. Medical Image Analysis 2017; 36: 15-21. doi: https://doi.org/10.1016/j.media.2016.10.007
Madani A, Arnaout R, Mofrad M, Arnaout R. Fast and accurate view classification of echocardiograms using deep learning. NPJ Digit Med 2018; 6: 1-8. doi: https://doi.org/10.1038/s41746-017-0013-1
Otani K, Nakazono A, Salgo IS, et al. Three-dimensional echocardiographic assessment of left heart chamber size and function with fully automated quantification software in patients with atrial fibrillation. J Am Soc Echocardiogr 2016; 29: 955-965. doi: https://doi.org/10.1016/j.echo.2016.06.010
Tamborini G, Piazzese C, Lang RM, et al. Feasibility and accuracy of automated software for transthoracic three-dimensional left ventricular volume and function analysis: comparisons with two- dimensional echocardiography, three-dimensional transthoracic manual method, and cardiac magnetic resonance imaging. J Am Soc Echocardiogr 2017; 30: 1049-1058. doi: https://doi.org/10.1016/j.echo.2017.06.026
De Agustin JA, Marcos-Alberca P, Fernandez-Golfin C, et al. Direct measurement of proximal isovelocity surface area by single-beat three-dimensional color Doppler echocardiography in mitral regurgitation: a validation study. J Am Soc Echocardiogr 2012; 25: 815-823. doi: https://doi.org/10.1016/j.echo.2012.05.021
Kagiyama N, Toki M, Hara M, et al. Efficacy and accuracy of novel automated mitral valve quantification: three-dimensional transesophageal echocardiographic study. Echocardiography 2016; 33: 756-763. doi: https://doi.org/10.1111/echo.13135
Calleja A, Thavendiranathan P, Ionasec RI, et al. Automated quantitative 3-dimensional modeling of the aortic valve and root by 3-dimensional transesophageal echocardiography in normals, aortic regurgitation, and aortic stenosis: comparison to computed tomography in normals and clinical implications. Circ Cardiovasc Imaging 2013; 6: 99-108. doi: https://doi.org/10.1161/CIRCIMAGING.112.976993
Narula S, Shameer K, Salem Omar AM, et al. Machine-learning algorithms to automate morphological and functional assessments in 2D echocardiography. Journal of the American College of Cardiology 2016; 68: 2287-2295. doi: https://doi.org/10.1016/j.jacc.2016.08.062.
Omar HA, Domingos JS, Patra A, et al. Quantification of cardiac bull’s-eye map based on principal strain analysis for myocardial wall motion assessment in stress echocardiography. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), 2018. doi: https://doi.org/10.1109/ISBI.2018.8363785
Sengupta PP, Huang YM, Bansal M, et al. Cognitive Machine-Learning Algorithm for Cardiac Imaging: A Pilot Study for Differentiating Constrictive Pericarditis From Restrictive Cardiomyopathy. Circ Cardiovasc Imaging 2016; 9(6): pii: e004330. doi: https://doi.org/10.1161/CIRCIMAGING.115.004330
Zhang J, Gajjala S, Agrawal P, et al. Fully automated echocardiogram interpretation in clinical practice: feasibility and diagnostic accuracy. Circulation 2018; 138: 1623-1635. doi: https://doi.org/10.1161/CIRCULATIONAHA.118.034338
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 Miguel Ángel García Fernández, Antonio López Farré
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
RETIC is distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license https://creativecommons.org/licenses/by-nc-nd/4.0 which allows sharing, copying and redistribution of the material in any medium or format, under the following terms:
- Attribution: you must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests that the licensor endorses you or your use.
- Non-commercial: you may not use the material for commercial purposes.
- No Derivatives: if you remix, transform or build upon the material, you may not distribute the modified material.
- No Additional Restrictions: you may not apply legal terms or technological measures that legally restrict others from doing anything permitted by the license.