Where is echocardiography headed?
DOI:
https://doi.org/10.37615/retic.n4a1Downloads
Metrics
References
D’Hooge J, Heimdal A, Jamal F, et al. Regional strain and strain rate measurements by cardiac ultrasound: principles, implementation and limitations. Eur J Echocardiogr 2000; 1: 154-170. DOI: https://doi.org/10.1053/euje.2000.0031
Dandel M, Hetzer R. Echocardiographic strain and strain rate imaging—clinical applications. Int J Cardiol 2009; 132: 11-24. DOI: https://doi.org/10.1016/j.ijcard.2008.06.091
Mor-Avi V, Lang RM, Badano LP, et al. Current and evolving echocardiographic techniques for the quantitative evaluation of cardiac mechanics: ASE/ EAE consensus statement on methodology and indications endorsed by the Japanese Society of Echocardiography. J Am Soc Echocardiogr 2011; 24: 277-313. DOI: https://doi.org/10.1016/j.echo.2011.01.015
Gorcsan J III, Tanaka H. Echocardiographic assessment of myocardial strain. J Am Coll Cardiol 2011; 58: 1401-1413. DOI: https://doi.org/10.1016/j.jacc.2011.06.038
Lang RM, Badano LP, Mor-Avi V, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 2015; 28: 1-39. DOI: https://doi.org/10.1016/j.echo.2014.10.003
Collier, et al. A Test in Context: Myocardial Strain Measured by Speckle-Tracking Echocardiography. JACC 2017; 69 (8): 1043-1056. DOI: https://doi.org/10.1016/j.jacc.2016.12.012
Thavendiranathan P, Grant AD, Negishi T, et al. Reproducibility of echocardiographic techniques for sequential assessment of left ventricular ejection fraction and volumes: application to patients undergoing cancer chemotherapy. J Am Coll Cardiol 2013; 61 (1): 77-84. DOI: https://doi.org/10.1016/j.jacc.2012.09.035
Vukicevic M, et al. Cardiac 3D Printing and it Future Directions. J Am Coll Cardiol Img 2017; 10 (2): 171-184. DOI: https://doi.org/10.1016/j.jcmg.2016.12.001
Tsang W, Salgo IS, Medvedofsky D, et al. Real-Time Automated Transthoracic Three-Dimensional Echocardiographic Left Heart Chamber Quantification using an Automated Adaptive Analytics Algorithm. JACC Cardiovasc Imaging 2016; 9: 769-782. DOI: https://doi.org/10.1016/j.jcmg.2015.12.020
Arujuna A, Housden R, Ma Y, et al. Novel system for real-time integration of 3D Echocardiography and fluoroscopy for imageguided cardiac interventions: preclinical Validation and clinical feasibility evaluation. IEEE Journal of traslational engineering in health and medicine 2014; 2: 110. DOI: https://doi.org/10.1109/JTEHM.2014.2303799
Balzer J, Zeus T, Hellhammer K, et al. Initial clinical experience using the Echonavigator® – system during structural heart disease interventions. World Journal of Cardiology 2015; 26: 7562-7570. DOI: https://doi.org/10.4330/wjc.v7.i9.562
Feldman T, Hellig F, Mollman H. Structural heart interventions: the state of the art and beyond. Eurointervention 2016; 12: 1-13. DOI: https://doi.org/10.4244/EIJV12SXA1
García-Fernández M, De Agustín A, Pérez de Isla L. Eco-Xray fusion in left atrial appendage closure. Revista Española de Cardiología 2017; 70: 194. DOI: https://doi.org/10.1016/j.rec.2016.05.020
Gaibazzi N, et al. Scar Detection by Pulse-Cancellation Echocardiography: Validation by CMR in Patients With Recent STEMI. JACC Cardiovasc Imaging 2016; 9 :1239-1251. DOI: https://doi.org/10.1016/j.jcmg.2016.01.021
Gupta P, Eisenbrey J, Stanczak M, et al. Effect of Pulse Shaping on Subharmonic Aided Pressure Estimation In Vitro and In Vivo. J Ultrasound Med 2017; 36: 3-11. DOI: https://doi.org/10.7863/ultra.15.11106
Forsberg F, Liu JB, Shi WT, et al. In vivo pressure estimation using subharmonic contrast microbubble signals: proof of concept. IEEE Trans Ultrason Ferroelectr Freq Control 2005; 52: 581-583. DOI: https://doi.org/10.1109/TUFFC.2005.1428040
Dave JK, Halldorsdottir VG, Eisenbrey JR, et al. Noninvasive LV pressure estimation using subharmonic emissions from microbubbles. JACC Cardiovasc Imaging 2012; 5: 87-92.
Dave JK, Halldorsdottir VG, Eisenbrey JR, et al. Subharmonic micro-bubble emissions for noninvasively tracking right ventricular pressures. Am J Physiol Heart Circ Physiol 2012; 303: H126-H132. DOI: https://doi.org/10.1152/ajpheart.00560.2011
Dave JK, Halldorsdottir VG, Eisenbrey JR, et al. Noninvasive LV pressure estimation using subharmonic emissions from microbubbles. JACC Cardiovasc Imaging 2012; 5: 87-92. DOI: https://doi.org/10.1016/j.jcmg.2011.08.017
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2017 Miguel Ángel García Fernández
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
RETIC is distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license https://creativecommons.org/licenses/by-nc-nd/4.0 which allows sharing, copying and redistribution of the material in any medium or format, under the following terms:
- Attribution: you must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests that the licensor endorses you or your use.
- Non-commercial: you may not use the material for commercial purposes.
- No Derivatives: if you remix, transform or build upon the material, you may not distribute the modified material.
- No Additional Restrictions: you may not apply legal terms or technological measures that legally restrict others from doing anything permitted by the license.